Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser.

نویسندگان

  • Sze-Chun Chan
  • Sheng-Kwang Hwang
  • Jia-Ming Liu
چکیده

Optically injected semiconductor laser under periodone oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the mapping of the period-one oscillation characteristics, including the microwave frequency, the microwave power, and the single sideband (SSB) characteristics of the optical spectrum. By accounting for the fiber chromatic dispersion, we calculate its effect on the optical spectrum and the associated microwave power penalty. A mapping of the minimum microwave power deliverable after the maximum penalty is obtained. The system is shown to be least susceptible to the penalty when operated under strong injection with the frequency detuned above the Hopf bifurcation line. Microwave frequency beyond six times the relaxation resonance frequency can be effectively transmitted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Division Multiplexed Radio-over-Fiber Transmission using an Optically Injected Laser Diode

Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is...

متن کامل

Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization.

The period-one (P1) nonlinear dynamics of a semiconductor laser subject to both optical injection and optical feedback are investigated for photonic microwave generation. The optical injection first drives the laser into P1 dynamics so that its intensity oscillates at a microwave frequency. A dual-loop optical feedback then stabilizes the fluctuations of the oscillation frequency. Photonic gene...

متن کامل

Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber

Broadband chaos generated in an optically injected semiconductor laser is applied for power-over-fiber transmission. By varying the injection power, period-one oscillation, period-two oscillation, and chaotic oscillation are observed in the injected slave laser, indicating a period-doubling route to chaos. Compared to the free-running output of the laser, its chaotic output has a drastically in...

متن کامل

Phase noise characteristics of microwave signals generated by semiconductor laser dynamics.

Phase noise of the period-one (P1) nonlinear dynamical oscillation in an optically injected semiconductor laser is numerically investigated. The P1 dynamics causes the laser output intensity to oscillate at a widely tunable frequency for photonic microwave generation, although the intrinsic spontaneous emission in the laser inevitably degrades the microwave signal and manifests as the oscillati...

متن کامل

Double-locked semiconductor laser for radio-over-fiber uplink transmission.

The nonlinear dynamics of an optically injected semiconductor laser are explored for radio-over-fiber uplink transmission. Under optical injection locking, the laser at the base station is operated in the period-one oscillation state, where its intensity oscillates at a tunable microwave frequency. When the oscillation is tuned to the subcarrier frequency, it is further locked by the uplink mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 15 22  شماره 

صفحات  -

تاریخ انتشار 2007